Preprocessing Script¶
Created on Thu Dec 3 01:51:16 2020 This is the script for preprocessing of MRS spectrums.
Users can switch between different methods using the method parameter of functions
Abdullah BAS abdullah.bas@boun.edu.tr BME Bogazici University Istanbul / Uskudar @author: abas
-
preprocess.
normalizer
(X, norm='l2')¶ Normalizer
- Parameters
X (float) – Input data
norm (str, optional) – You can choose between L1 and L2. Defaults to ‘l2’.
- Returns
X_norm is the normalized output of input X
- Return type
[float]
-
preprocess.
scaler
(X, method=2)¶ In this function users can select a scaler among sklearn.preprocessing.scale,StandardScaler,MinMaxScaler,RobustScaler
- Parameters
X (float) – Input array.
method (int, optional) – It is for choosing the scaler.0:scale,1:StandardScaler,2:MinMaxScaler,3:RobustScaler. Defaults to 2.
- Returns
X_scaled scaled version of X [scaler]: Scaler with parameters estimated from input X.
- Return type
[float]
-
preprocess.
smoother
(X, window=11, order=2)¶ Savitzky-Golay filtering
- Parameters
X (float) – Input data
window (int, optional) – Smoothin kernel length. Defaults to 11.
order (int, optional) – Filter order. Defaults to 2.
- Returns
X_smooth is the smoothed output of input X.
- Return type
[float]
-
preprocess.
transformation
(X, method=1, powerMet='yeo-johnson')¶ Power transformation
- Parameters
X (float) – Input data
method (int, optional) – 0:QuantileTransformer,1:Power Transformer. Defaults to 1.
powerMet (str, optional) – It is essential for method 1. Not included in method 0. Defaults to ‘yeo-johnson’.
- Returns
X_tr transformed version of X. [transformer]: transformer with the estimated values from the input X
- Return type
[float]