preprocess module¶
- class preprocess.preGlioma¶
Bases:
object
This class is for preprocessing. Mainly wrote for gliomas but it is used in meningiomas too
- bet(img)¶
Performing bet using another library
- Parameters
img (nib.nifti) – Input image
- Returns
Brain extracted image
- Return type
[torch.tensor]
- betfsl(segs, root='/cta/users/abas/Desktop/Meningiom/MeningiomData/preprocessed/')¶
Performing fsl-bet using python
- Parameters
segs (torch.tensor) – segmentation paths. It is needed for finding the corresponding image
root (str, optional) – Root path of the images. Defaults to ‘/cta/users/abas/Desktop/Meningiom/MeningiomData/preprocessed/’.
- Returns
Result situation
- Return type
[str]
- cut_tumor_image(seg)¶
Cutting the tumor image from the segmentation
- Parameters
seg (segmentatiom) – [description]
- Returns
[description]
- Return type
[type]
- normalize(img, typx='unit-variance', masked=False)¶
Normalization step of the image
- Parameters
img (np.array) – image to be normalized
typx (str, optional) – Type of normalization [min-max, unit-variance]. Defaults to ‘unit-variance’.
masked (bool, optional) – Mask is for eliminate the zeroish voxels. Defaults to False.
- Returns
Normalized image
- Return type
[np.array]
- patch_chopper(imgs, patch_size=256, dim=0)¶
This function is used to chop the image into patches
- Parameters
imgs (list) – input images
patch_size (int, optional) – Defaults to 256.
dim (int, optional) – Defaults to 0.
- Returns
list chopped images tensors
- Return type
[list]
- reconstruct(images, org_size, labels=None)¶
Reconstructing the image from the patches
- Parameters
images (list) – List of patches
org_size (shape) – Not used in this version. Deprecated
labels (list ,optional) – Defaults to None. If it is not none it will reconstruct image with the labels gathered from the patches using classifier network
- Returns
Reconstructed image
- Return type
torch.tensor
- reverse_pad(image, org_size)¶
Reverse padding of initialized class
- Parameters
image (torch.tensor) – Reconstructed image with padding
org_size (org_size) – Original size of the image
- Returns
Reverse padded image
- Return type
torch.tensor
- save_image(images, segs, image, seg, name, root='/cta/users/abas/Desktop/Meningiom/MeningiomData/preprocessed/')¶
Saving the tensors of images
- Parameters
images (list) – Chopped images
segs (list) – Chopped segmentations
image (np.array) – Original image
seg (np.array) – Original segmentation
name (str) – Name of the image
root (str, optional) – Save path. Defaults to ‘/cta/users/abas/Desktop/Meningiom/MeningiomData/preprocessed/’.
- slice_chopper(img, seg=None, slices=5, dim=- 1, phase='test')¶
This function is used to chop the image into slices (Not implemented in s100 project it is needed for the patch-wise projects)
- Parameters
img (torch.tensor) – Image to be chopped
seg (torch.tensor, optional) – Segmentation mask . Defaults to None.
slices (int, optional) – Number of the slices. Defaults to 5.
dim (int, optional) – Dimension of the splitting occurs. Defaults to -1.
phase (str, optional) – Defaults to ‘test’.
- Returns
List of torch tensors
- Return type
[list]